109 research outputs found

    Computer simulation of three-dimensional plaque formation and progression in the carotid artery

    Get PDF
    Atherosclerosis is becoming the number one cause of death worldwide. In this study, three-dimensional computer model of plaque formation and development for human carotid artery is developed. The three-dimensional blood flow is described by the Navier-Stokes equation, together with the continuity equation. Mass transfer within the blood lumen and through the arterial wall is coupled with the blood flow and is modeled by a convection-diffusion equation. The low-density lipoproteins transports in lumen of the vessel and through the vessel tissue are coupled by Kedem-Katchalsky equations. The inflammatory process is modeled using three additional reaction-diffusion partial differential equations. Fluid-structure interaction is used to estimate effective wall stress analysis. Plaque growth functions for volume progression are correlated with shear stress and effective wall stress distribution. We choose two specific patients from MRI study with significant plaque progression

    Local blood pressure associates with the degree of luminal stenosis in patients with atherosclerotic disease in the middle cerebral artery.

    Get PDF
    The mechanism underlying atherosclerotic ischemic events within the middle cerebral artery (MCA) is unclear. High structural stress induced by blood pressure might be a potential aetiology as plaque rupture occurs when such mechanical loading exceeds its material strength. To perform reliable analyses quantifying the mechanical loading within a plaque, the local blood pressure is needed. However, data on MCA blood pressure is currently lacking. In this study, the arterial pressure proximal to the stenotic site in the MCA was measured in 15 patients scheduled for intervention. The relationships between these local measurements and pre-intervention and intra-intervention non-invasive arm measurements were assessed. The impact of luminal stenosis on the local blood pressure was quantified. Compared with the pre-intervention arm measurement, the intra-intervention arm pressure decreased significantly by 23.9 ± 11.8 and 9.3 ± 14.7 % at diastole and systole, respectively. The pressure proximal to the stenosis was much lower than the pre-intervention arm measurement (diastole: 65.3 ± 15.7 vs 82.0 ± 9.7, p < 0.01; systole: 81.1 ± 15.9 vs 133.9 ± 18.7, p < 0.01; unit: mmHg). The systolic pressure in the MCA in patients with stenosis <70 % (n = 6) was significantly higher than the value in patients with stenosis ≥70 % (n = 9) (92.0 ± 7.3 vs 73.9 ± 16.1, p = 0.02; unit: mmHg), as was pulse pressure (22.8 ± 6.4 vs 11.1 ± 8.3, p = 0.01; unit: mmHg). However, diastolic pressure remained unaffected (69.2 ± 9.3 vs 62.8 ± 19.0, p = 0.58; unit: mmHg). In conclusion, the obtained results are helpful in understanding the local hemodynamic environment modulated by the presence of atherosclerosis. The local pressure measurements can be used for computational analysis to quantify the critical mechanical condition within an MCA lesion.Emerging Frontier Technology Joint Research Program of Shanghai Municipal Hospital, China (Grant ID: SHDC12013110), National Natural Science Foundation of China (Grant ID: 31470910), National Institute for Health Research Cambridge Biomedical Research CentreThis is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s12938-016-0202-

    In vivo MRI-based simulation of fatigue process: a possible trigger for human carotid atherosclerotic plaque rupture.

    Get PDF
    BACKGROUND: Atherosclerotic plaque is subjected to a repetitive deformation due to arterial pulsatility during each cardiac cycle and damage may be accumulated over a time period causing fibrous cap (FC) fatigue, which may ultimately lead to rupture. In this study, we investigate the fatigue process in human carotid plaques using in vivo carotid magnetic resonance (MR) imaging. METHOD: Twenty seven patients with atherosclerotic carotid artery disease were included in this study. Multi-sequence, high-resolution MR imaging was performed to depict the plaque structure. Twenty patients were found with ruptured FC or ulceration and 7 without. Modified Paris law was used to govern crack propagation and the propagation direction was perpendicular to the maximum principal stress at the element node located at the vulnerable site. RESULTS: The predicted crack initiations from 20 patients with FC defect all matched with the locations of the in vivo observed FC defect. Crack length increased rapidly with numerical steps. The natural logarithm of fatigue life decreased linearly with the local FC thickness (R(2) = 0.67). Plaques (n=7) without FC defect had a longer fatigue life compared with those with FC defect (p = 0.03). CONCLUSION: Fatigue process seems to explain the development of cracks in FC, which ultimately lead to plaque rupture.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    MRI-based biomechanical parameters for carotid artery plaque vulnerability assessment.

    Get PDF
    Carotid atherosclerotic plaques are a major cause of ischaemic stroke. The biomechanical environment to which the arterial wall and plaque is subjected to plays an important role in the initiation, progression and rupture of carotid plaques. MRI is frequently used to characterize the morphology of a carotid plaque, but new developments in MRI enable more functional assessment of carotid plaques. In this review, MRI based biomechanical parameters are evaluated on their current status, clinical applicability, and future developments. Blood flow related biomechanical parameters, including endothelial wall shear stress and oscillatory shear index, have been shown to be related to plaque formation. Deriving these parameters directly from MRI flow measurements is feasible and has great potential for future carotid plaque development prediction. Blood pressure induced stresses in a plaque may exceed the tissue strength, potentially leading to plaque rupture. Multi-contrast MRI based stress calculations in combination with tissue strength assessment based on MRI inflammation imaging may provide a plaque stress-strength balance that can be used to assess the plaque rupture risk potential. Direct plaque strain analysis based on dynamic MRI is already able to identify local plaque displacement during the cardiac cycle. However, clinical evidence linking MRI strain to plaque vulnerability is still lacking. MRI based biomechanical parameters may lead to improved assessment of carotid plaque development and rupture risk. However, better MRI systems and faster sequences are required to improve the spatial and temporal resolution, as well as increase the image contrast and signal-to-noise ratio.This is the author accepted manuscript. The final version is available from Schattauer via http://dx.doi.org/10.1160/TH15-09-071

    Intraplaque hemorrhage is associated with higher structural stresses in human atherosclerotic plaques: an in vivo MRI-based 3D fluid-structure interaction study.

    Get PDF
    BACKGROUND: Studies using medical images have shown that intraplaque hemorrhage may accelerate plaque progression and may produce a stimulus for atherosclerosis development by increasing lipid core and plaque volume and creating new destabilizing factors. Image-based 3D computational models with fluid-structure interactions (FSI) will be used to perform plaque mechanical analysis and investigate possible associations between intraplaque hemorrhage and both plaque wall stress (PWS) and flow shear stress (FSS). METHODS: In vivo MRI data of carotid plaques from 5 patients with intraplaque hemorrhage confirmed by histology were acquired. 3D multi-component FSI models were constructed for each plaque to obtain mechanical stresses. Plaque Wall Stress (PWS) and Flow Shear Stress (FSS) were extracted from all nodal points on the lumen surface of each plaque for analysis. RESULTS: The mean PWS value from all hemorrhage nodes of the 5 plaques combined was higher than that from non-hemorrhage nodes (75.6 versus 68.1 kPa, P = 0.0003). The mean PWS values from hemorrhage nodes for each of the 5 plaques were all significantly higher (5 out of 5) than those from non-hemorrhage nodes (P < 0.05). The mean FSS value from all hemorrhage nodes of the 5 plaques combined was 30.4% higher than that from all non-hemorrhage nodes (15.0 versus 11.5 dyn/cm2, P = 0.0002). However, the mean flow shear stress values from individual cases showed mixed results: only one out of five plaques showed mean FSS value from hemorrhage nodes was higher than that from non-hemorrhage nodes; three out of five plaques showed that their mean FSS values from hemorrhage nodes were lower than those from non-hemorrhage nodes; and one plaque showed that the difference had no statistical significance. CONCLUSION: The results of this study suggested that intraplaque hemorrhage nodes were associated with higher plaque wall stresses. Compared to flow shear stress, plaque wall stress has a better correlation with plaque component feature (hemorrhage) linked to plaque progression and vulnerability. With further validation, plaque stress analysis may provide additional stress indicators for image-based vulnerability assessment.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    corecore